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a b s t r a c t 

Anomaly detection in videos remains a challenging task due to the ambiguous definition of anomaly and 

the complexity of visual scenes from real video data. Different from the previous work which utilizes 

reconstruction or prediction as an auxiliary task to learn the temporal regularity, in this work, we explore 

a novel convolution autoencoder architecture that can dissociate the spatio-temporal representation to 

separately capture the spatial and the temporal information, since abnormal events are usually different 

from the normality in appearance and/or motion behavior. Specifically, the spatial autoencoder models 

the normality on the appearance feature space by learning to reconstruct the input of the first individual 

frame (FIF), while the temporal part takes the first four consecutive frames as the input and the RGB 

difference as the output to simulate the motion of optical flow in an efficient way. The abnormal events, 

which are irregular in appearance or in motion behavior, lead to a large reconstruction error. To improve 

detection performance on fast moving outliers, we exploit a variance-based attention module and insert 

it into the motion autoencoder to highlight large movement areas. In addition, we propose a deep K- 

means cluster strategy to force the spatial and the motion encoder to extract a compact representation. 

Extensive experiments on some publicly available datasets have demonstrated the effectiveness of our 

method which achieves the state-of-the-art performance. The code is publicly released at the link 1 . 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Anomaly detection in videos refers to the identification of 

vents that deviate from the expected behavior [1,2] , which is an 

mportant task in video analytics and plays a crucial role in video 

urveillance. However, video anomaly detection is an extremely 

hallenging task due to the following reasons: first, realistic video 

ata is complex, and some anomaly data points may lie close to 

he boundary of normal regions, e.g. skateboarders and walking 

eople are similar in appearance, but skateboarders are abnormal 

bjects which are prohibited on the pedestrian footpath. Second, 

he labeled training data for anomaly detection is limited. Although 

he normal patterns are usually relatively easy to collect, while the 

bnormal samples are few and costly to acquire. Consequently, in 

ome cases, anomaly detection methods [3,4] only train their mod- 

ls on the normal data to learn the regularity with an unsuper- 
∗ Corresponding author. 

E-mail address: tuzhigang@whu.edu.cn (Z. Tu). 
1 https://github.com/ChangYunPeng/VideoAnomalyDetection 
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ised setting, and determine which instance is deviated from the 

ormal patterns. 

Recently, many deep learning-based methods [1,5–7] have been 

roposed to handle the problem of limited labeled data by mod- 

ling the normal pattern. Most of these methods learn an au- 

oencoder or U-Net to reconstruct normal events or predict fu- 

ure frames to capture the normality behind the video sequences. 

he reconstruction based anomaly detection methods [1] take the 

and-crafted feature (e.g. low-level trajectory features) or directly 

se video frames as the input, and extract high-level feature rep- 

esentation to model the normality, where the temporal regular- 

ty of the normal events can be learned by minimizing the recon- 

truction error. Since these models only learn the patterns within 

he normal training set, the abnormal patterns will lead to larger 

econstruction error. Therefore, abnormal events can be distin- 

uished by their reconstruction quality. In [3] , it is argued that be- 

ause of the high capacity of the deep neural networks, the recon- 

truction error of abnormal events is not necessarily larger than 

hat of the normal events, thus [3] proposed a prediction-based 

nomaly detection method, which predicts the next future frame 

rom the previous consecutive frames with an U-Net architecture, 

https://doi.org/10.1016/j.patcog.2021.108213
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108213&domain=pdf
mailto:tuzhigang@whu.edu.cn
https://github.com/ChangYunPeng/VideoAnomalyDetection
https://doi.org/10.1016/j.patcog.2021.108213
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Fig. 1. Overview of our video anomaly detection architecture. We dissociate the spatial-temporal information into two sub-modules. The spatial autoencoder E a and D a are 

used to reconstruct the LIF, while the temporal autoencoder E m and D m are applied to predict the RGB difference between the FIF and the LIF with the input consecutive 

video frames. Both encoders and decoders are constructed by three ResNet blocks. Specifically, we replace the ReLU layers with LeakyReLU in all blocks, and for the decoder 

networks, we replace the stride convolution layer with pixel shuffle layer to progressively increase the spatial resolution. To further constrain the two streams, we introduce 

a deep K-means cluster strategy to extract compact representations, represented as the purple area. During the training stage, we optimize the two streams with the deep 

K-means cluster method according to the distance between the concatenated representations from the spatial encoder and the motion encoder with their corresponding 

cluster centers. Furthermore, we exploit a variance based attention module which can automatically assign an importance weight to the moving part of video clips in the 

motion autoencoder. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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nd then compares the prediction with future frames to identify 

bnormal events. 

However, these approaches mainly focus on learning the motion 

nformation and the temporal regularity, missing one crucial factor 

hat the appearance abnormality cue, which is also important. This 

akes them insensitive to some anomalous objects, which are ob- 

iously different from the normal objects in appearance while do 

ot involve motion outliers [8] . 

Since abnormal events can be irregular in either appearance or 

otion, it is desirable to combine both the spatial and temporal 

eatures for anomaly detection [2,9] . In this work, we decouple the 

patio-temporal information into two sub-modules to learn regu- 

arity in both the spatial and temporal feature spaces. 

Given the consecutive video frames, the spatial autoencoder op- 

rates on the first individual frame (FIF), and the motion autoen- 

oder conducts on the first four video frames. The spatial autoen- 

oder, in the form of individual frame appearance, carries informa- 

ion about the scene and objects depicted in the video, while the 

otion autoencoder produces the RGB difference between the last 

ideo frames (LIF) and the FIF to obtain motion information. Then 

e combine the reconstruction result from the spatial autoencoder 

ith the RGB difference from the temporal autoencoder to get the 

nal prediction. As shown in Fig. 1 , our two sub-modules can si- 

ultaneously learn the appearance and motion regularity. No mat- 

er the event is irregular in the appearance feature space or the 

otion feature space, it will achieve a large reconstruction error. 

In particular, previous works [7,10,11] also exploited a two- 

tream architecture for anomaly detection, their motion stream 

earns the motion representation mainly by generating or recon- 

tructing the corresponding optical flow. However, optical flow 

ay not be optimal for learning regularity as they are not specifi- 

ally designed for anomaly detection [1,12] . Moreover, optical flow 

stimation has a high computational cost. To overcome these draw- 

acks, our motion autoencoder takes consecutive video frames as 
2 
he input and their RGB difference as the output to learn motion 

nformation [13] , where the RGB difference cue can be obtained 

uch faster than the optical flow to capture the motion informa- 

ion, and the generation of motion autoencoder can be easily pixel- 

ise fused with the reconstruction of the spatial autoencoder to 

urther help anomaly detection. 

Noticeably, most part of the surveillance video is still and out- 

iers usually have a high correlation to fast movement, such as the 

edestrian running quickly at the subway entrance and the vehi- 

le driving fast on the pedestrian walkways. Therefore, we exploit 

 variance based attention module to automatically highlight the 

mage area of large movement and attach this attention module 

fter each block of the motion encoder. 

In addition, similar to the previous work [14] which clusters the 

ormal training samples into k clusters by using the K-means algo- 

ithm [15] , we introduce a deep K-means cluster strategy to force 

he spatial encoder and the temporal encoder to obtain a more 

ompressed data representation. Specifically, we initialize our clus- 

er centers with the K-means algorithm, and simultaneously opti- 

ize the cluster centers and the two streams. By minimizing the 

istance between the data representation and the cluster centers, 

ormal examples are closely mapped to the cluster centers while 

nomalous examples are mapped away from the cluster centers. 

In brief, our approach considers both the appearance and mo- 

ion features based on the perception that compared with the nor- 

al behavior, an abnormal behavior differs either or both in their 

ppearance and motion patterns. 

In summary, our work makes the following contributions: 

• We propose a novel autoencoder architecture to dissociate the 

spatio-temporal representation and learn the regularity in both 

the spatial feature space and the motion feature space to detect 

abnormal event in videos. 
• We design an efficient motion autoencoder, which takes con- 

secutive video frames as input and RGB difference as output 
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to imitate the movement of optical flow. The proposed method 

is much faster than the optical flow-based motion representa- 

tion learning approach, where its average running time is 32FPS 

with one GPU. 
• We exploit a variance attention module to automatically assign 

an importance weight to the moving part of video clips, which 

is useful to improve the performance of the motion autoen- 

coder. 
• We explore a deep K-means cluster strategy to force the au- 

toencoder network to generate compact motion and appearance 

descriptors. Since the cluster is only trained on normal events, 

the distance between the cluster and the abnormal representa- 

tion is much higher than that between the normal pattern. The 

reconstruction error and the cluster distance are together used 

to evaluate the anomaly. 

This paper is an extension of our conference work [16] , where 

he new contributions include: 

• We replace the multiple RGB difference output of the original 

motion autoencoder with the residual between the first and the 

last individual frame, to make the motion autoencoder learn 

the longest-range temporal information within the input video 

frames. Experimental results show that by learning to predict 

this motion cue is able to improve the performance of the 

anomaly detection. 
• To learn the normality in both the spatial and motion feature 

spaces, we concatenate these representations extracted from 

the two streams at the same spatial location, and optimize the 

two streams and the deep K-means cluster jointly with the 

early-fusion strategy. Besides, we conduct more experiments to 

demonstrate the effectiveness of the proposed deep K-means 

cluster method. 
• We modify the anomaly score calculation scheme to fuse the 

spatio-temporal information with their distance from the deep 

K-means cluster in the pixel-level. Compared with our prior 

frame-level fusion scheme, experimental results show that the 

performance of the new architecture is improved. 

The rest of this paper is organized as follows: we first dis- 

uss the related work about anomaly detection in Section 2 and 

hen present our proposed architecture in Section 3 . Experiments 

re conducted and analyzed in Section 4 . Section 5 concludes this 

ork. 

. Related work 

.1. Anomaly detection with autoencoder 

Due to the complexity of realistic data and the limitation of 

ffective labeled data, the anomaly event detection task is usu- 

lly formulated in an unsupervised setting, where the training sets 

ontain only the normal events. 

Most deep learning-based methods use autoencoder [17–20] to 

xtract feature representation, and adopt reconstruction based or 

rediction based approaches to learn the normality behind the 

ideo sequences. The reconstruction based anomaly detection ap- 

roach takes the given video frames as input and learn to recon- 

truct normal event with small reconstruction error by extracting 

he high-level feature representation [1] . applies 2D convolutional 

utoencoder to reduce dimensionality and learn temporal regular- 

ty [21–23] . use the temporal coherency prior of adjacent frames 

o train an autoencoder network [24] . introduces label-free super- 

ision, which uses constraint learning combined with physics and 

omain knowledge, to jointly solve three computer vision tasks, 

ncluding tracking objects and walking man [5] . uses the encoder 

STM to extract features and applies the decoder LSTMs for recon- 
3 
truction, where this strategy has been widely used for sequential 

ata modeling. 

Except the reconstruction based approach, future frame predic- 

ion [3] is an alternative deep learning-based method which re- 

ards anomaly as the event that does not conform to the expecta- 

ion. These methods are trained to predict the future frame on the 

ormal training dataset based on its historical observation, and in 

he testing phase, the abnormal events can be identified by com- 

aring the prediction with their expectation. 

We also apply the autoencoder as a backbone network and 

rain it on the normal dataset to extract the common factor. Sig- 

ificantly, we incorporate both the reconstruction-based and the 

rediction-based architectures, and simultaneously reconstruct the 

nput single frame to capture the appearance feature, and predict 

he RGB difference between the future frame and the first input 

rame to learn the motion pattern of the normal event. Conse- 

uently, anomalous samples which contain irregular factors in the 

eature space cannot be reconstructed accurately. 

.2. Video tasks with two stream networks 

To fully use both the spatial and temporal information for video 

asks, [25] firstly exploits a two-stream network i.e. a RGB-stream 

nd an optical flow-stream, in which the two streams are com- 

ined by late fusion for action classification [26] . proposes a spatial- 

emporal attention module with two network branches for activ- 

ty recognition [8] . jointly models the appearance and dynamics 

f crowd patterns, and has demonstrated the effectiveness of the 

wo-stream architecture in modeling complex dynamic scenes. 

Since abnormal events can be detected by either appearance 

r motion, [7] introduces the two-stream architecture for anomaly 

etection in videos. Besides, image patches and dynamic motion 

epresented by optical flow are employed as input for two sepa- 

ate networks to respectively capture the appearance representa- 

ion and the motion representation, then the anomaly scores of 

hese two streams are combined by late fusion for final evalua- 

ion [11] . utilizes two generator networks to learn the normal pat- 

erns of the crowd behavior, where a generator network takes the 

nput frames to produce optical flow images, and the other gener- 

tor network reconstructs frames from the optical flow [10] . uses 

wo processing streams, where the first autoencoder learns the 

ommon spatial appearance structure in normal event and the sec- 

nd stream learns its corresponding motion feature represented by 

ptical flow. 

Except the methods that directly take video frames and op- 

ical flow as inputs, MPEDRNN [27] extracts 2D human skeleton 

rajectories and feeds these trajectories into encoders, then simul- 

aneously reconstructing the input and predicting the unseen fu- 

ure with two interacting branches, where each branch consists of 

n encoder-decoder with RNN to detect anomalous human-related 

vents in surveillance videos. 

However, for these methods, it is time costly to acquire optical 

ow [28] or trajectories. In contrast, we exploit an RGB-difference 

trategy to replace optical flow to simulate motion information, 

hich is much more efficient. Specifically, at the training stage, we 

tack all the other frames except the LIF and use the 2D CNN as 

he backbone of the temporal autoencoder to process consecutive 

ideo frames. By enforcing the motion encoder to learn compact 

otion representation and produce the RGB difference, the motion 

utoencoder can effectively learn the temporal regularity and mo- 

ion consistency. 

.3. Data representation and data clustering 

Many anomaly detection methods [29–33] aim to find a “com- 

act description” within the normal events. Recently, some auto- 
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Fig. 2. The structure of our spatial autoencoder with the spatial resolution and the number of channels of feature maps at each bottleneck. We resize all input video frames 

to 256 × 256 and feed the first frame into the spatial autoencoder. The spatial decoder reconstructs the input frame x̄ f i f from the spatial representations. 
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l a = x f i f − x̄ f i f (3) 
ncoder based methods combine feature learning and clustering 

ogether [34] . jointly trains a CNN autoencoder and a multinomial 

ogistic regression model to the autoencoder latent space. Similarly, 

35] alternates the representation learning and clustering, where 

 mini-batch k-Means is utilized as the clustering component [36] . 

roposes a Deep Embedded Clustering (DEC) method, which jointly 

pdates the cluster centers and the data points representations 

hat are initialized from a pre-trained autoencoder. DEC uses soft 

ssignments which are optimized to match stricter assignments 

hrough a Kullback-Leibler divergence loss. IDEC [37] and ST-GCAE 

38] are subsequently proposed as an improvement of DEC [14] . 

roposes a supervised classification approach based on clustering 

he training samples into normality clusters [39] . exploits a mem- 

ry module for anomaly detection by recording various patterns 

f normal data into individual items in the memory. Based on 

his architecture and inspired by the idea of [40] , we introduce 

 deep K-means cluster to force the autoencoder network to gen- 

rate compact feature representation for video anomaly detection. 

t the training stage, we train our deep K-means cluster by mini- 

izing the distance between the data representation and the clus- 

er centers. Hence each cluster center can be deemed as a normal 

patial-temporal pattern within the training dataset. At the infer- 

nce stage, the representation of normal samples will be mapped 

ore closely to the cluster centers. 

. Methods 

.1. Overview 

For the abnormal event detection task, the training sets contain 

nly the normal events, therefore an effective solution is to learn 

he regularity in normal training videos with an unsupervised set- 

ing. In our proposed method, we dissociate the spatial informa- 

ion and the motion information with a two-stream architecture, 

nd utilize both reconstruction and prediction as the auxiliary task 

espectively for the spatial stream and the motion stream. 

As shown in Fig. 1 , there are three main components in our 

ramework to process the given video clips x : 

1) The spatial encoder E a takes the first individual frame x f i f as 

input and generates the spatial representation z a , which carries 

information about the scene and objects depicted in the video. 

Then we feed z a into the spatial decoder D a to get the recon- 

struction result x̄ f i f . 

2) The motion encoder E m 

takes the video clips except the last in- 

dividual frame x li f as input, denoted as x clips , and we insert the 

proposed variance-based attention module into the E m 

to high- 

light the fast moving area. The motion decoder D m 

is trained 

to generate the RGB difference x di f f between x f i f and x li f with 
4 
the input motion representation z m 

, where the generation is de- 

noted as x̄ di f f . 

3) The deep K-means cluster minimizes the distance between the 

concatenated representation r and the cluster centers C to force 

both the spatial encoder and the motion encoder networks to 

extract the common factors within the training sets. 

To detect whether the given video clips x is abnormal or not, 

e compare the final prediction result x̄ li f (i.e., the summation 

f the reconstruction x̄ f i f and the generated RGB difference x̄ di f f ) 

ith x li f to measure the prediction quality. Eventually, we fuse the 

rediction quality with their distance from the cluster to get the 

nal anomaly score. 

.2. Spatial autoencoder 

Since some abnormal objects are partially associated with par- 

icular objects, the static appearance of itself is a useful clue [25] . 

o detect the abnormal object with spatial features such as scene 

nd appearance, we feed the first frame of the input video clips 

nto the spatial autoencoder network. In our model, the spatial en- 

oder is used to encode the input frame to a mid-level appearance 

epresentation, and the spatial autoencoder is trained by minimiz- 

ng the reconstruction error between the input frame x f i f and the 

utput frame x̄ f i f , therefore, the bottleneck latent-space z a con- 

ains essential spatial information for frame reconstruction. 

Given an individual frame, the spatial encoder converts it to ap- 

earance representation z a , and the spatial decoder generates the 

econstruction result x̄ f i f from the appearance representation z a : 

 a = E a (x f i f ; θ a 
e ) (1) 

¯
 f i f = D a (z a ; θ a 

d ) (2) 

here θ a 
e represents the spatial encoder’s parameters, θ a 

d 
denotes 

he spatial decoder’s parameters. Fig. 2 depicts the main structure 

f our spatial autoencoder. Both the encoder E a and the decoder 

 a are constructed by three ResNet blocks [41] . For the encoder, 

e remove the two batchnorm layers [42] within each block and 

ttach the batchnorm layer after the block. While for the decoder 

etwork, instead of using the deconvolution layer [43] to progres- 

ively increase the spatial resolution, we replace the downsampling 

ayer in the ResNet block with the pixel shuffle layer [44] to reduce 

heckerboard artifacts [45] . Furthermore, we replace the ReLU lay- 

rs [46] with LeakyReLU for all blocks. 

To train the spatial autoencoder to learn regularity in the ap- 

earance feature space, we calculate the mean square error be- 

ween the input x f i f and the reconstruction x̄ f i f , where the loss 

unction of the spatial autoencoder l a is defined as: 
∥∥ ∥∥
2 
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Fig. 3. Some examples of RGB video frames, RGB difference and optical flow. 

Fig. 4. The structure of our motion autoencoder with the spatial resolution and the 

number of channels of feature maps at each bottleneck. The input of the motion au- 

toencoder is 4 stacked frames with the size of 256 × 256 × 12. The motion decoder 

produces the RGB difference x̄ di f f from the motion representations. 
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Fig. 5. The structure of the variance attention module. We get the embedding of 

the input motion features and calculate the variance along the feature dimension 

followed by operating the l 2 normalization along the spatial dimension to generate 

the corresponding attention map. 
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.3. Motion autoencoder 

Most two-stream based convolutional networks utilize warped 

ptical flow as the source for motion modeling [25,47] . Despite the 

otion feature is very useful, expensive computational cost of op- 

ical flow estimation impedes the method, which relies on optical 

ow, to be used for many real-time implementations. 

Inspired by [13] , we exploit a novel motion representation to 

imulate the motion of optical flow, which is directly obtained by 

he difference of RGB values between video frames. As shown in 

ig. 3 , it is reasonable to hypothesize that the motion represen- 

ation captured from optical flow could be learned from the sim- 

le cue of RGB difference [13] . Accordingly, we build a motion au- 

oencoder to generate RGB difference with the input of consecutive 

ideo frames. By imitating the movement of optical flow with the 

roduced RGB difference, the motion autoencoder can learn the 

emporal regularity, and its captured feature representation con- 

ains essential motion information. For the given video clips x , we 

tack all the other frames except the LIF as the input, and the RGB 

ifference between the last video frame and the first frame as the 

arget. 

Fig. 4 depicts the main structure of our motion autoencoder. 

e adopt the U-Net [48] architecture and use the 2D CNN as the 

ackbone of the motion autoencoder to process consecutive video 

rames x clips . The motion encoder E m 

converts x clips to motion rep- 

esentations z m 

. The motion decoder produces the RGB difference 

¯ di f f from the motion representations: 

 m 

= E m 

(x clips ; θm 

e ) (4) 
5 
¯
 di f f = D m 

(z m 

; θm 

d ) (5) 

here θm 

e represents the motion encoder’s parameters, θm 

d 
denotes 

he motion decoder’s parameters. Similar to the spatial autoen- 

oder, both the encoder E m 

and the decoder D m 

consist of three 

esNet blocks, we remove the batch normalization layer [42] and 

eplace the ReLU layers [46] with LeakyReLU in all blocks. Re- 

arkably, different from the spatial encoder, since there are skip- 

onnections between the motion encoder and the motion decoder, 

ach block in the motion decoder processes both the concatenation 

f the upsampled motion representation and the low-level feature. 

o prevent over-smoothing of the generated result, we calculate 

oth the l 2 distance and the gradient loss between the generated 

GB difference x̄ di f f and the ground-truth x di f f to make the result 

ore close to the target. The loss function l m 

of the motion au- 

oencoder is defined as: 

 m 

= 

∥∥x di f f − x̄ di f f 

∥∥
2 

+ 

∑ 

d∈{ x,y } 

∥∥∣∣g d (x di f f ) 
∣∣ −

∣∣g d ( ̄x di f f ) 
∣∣∥∥

1 
(6) 

here g d denotes the image gradient of video frames along the 

patial x-axis and the y-axis. In other words, the final loss function 

f the motion autoencoder l m 

is defined as the combination of the 

 2 loss and the gradient loss. 

.4. Variance attention module 

It is a normal phenomenon that most part of the surveillance 

ideo is static, and the abnormal behaviors are more likely to have 

arge movement changes. Based on this characteristic, we design a 

ariance-based attention in temporal autoencoder to automatically 

ssign the importance weight to the moving part of video clips. 

Since our motion encoder consists of three 2D ResNet blocks, 

very location of the feature maps contains the local motion infor- 

ation across the channels. It is similar to 3D convolution which 

ontains the motion information along the temporal axis, while 

he 2D convolution contains these information within the feature 

hannels. Therefore, for those areas with large movement, the vari- 

nce of these embedding will also be higher. Accordingly, we can 

irectly calculate the mean of the representations across the chan- 

els and then compute the variance at every location. 

Given the embedded motion feature z i m 

from the i − th block of 

he motion encoder, the attention module firstly feeds the embed- 

ed feature into a convolutional layer: 

f n (h, w ) = W g ∗ z i m 

(h, w ) (7) 

here h ∈ (0 , H i ] and w ∈ (0 , W i ] . H i and W i denote the number of

ows and columns of the feature maps of the i − th block of the 



Y. Chang, Z. Tu, W. Xie et al. Pattern Recognition 122 (2022) 108213 

Fig. 6. The first row shows some normal samples and the second row shows some anomaly samples from the CUHK Avenue (left column), the UCSD (middle column), and 

the ShanghaiTech datasets (right column) respectively. Red boxes denote anomalies in abnormal frames. 
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otion encoder respectively. W g represents the weight parameters 

f the convolutional filter, and we use this convolutional filter to 

et the embedding of the input features. We calculate the variance 

long the feature dimension followed by operating the l 2 normal- 

zation along the spatial dimension to generate the corresponding 

ttention map g n : 

 (h, w ) = 

1 

D 

D ∑ 

d=1 

∥∥∥∥∥ f n (h, w, d) − 1 

D 

D ∑ 

d=1 

f n (h, w, d) 

∥∥∥∥∥
2 

(8) 

t t (h, w ) = 

∥∥∥∥∥
exp(v (h, w )) 

∑ H,W 

h =1 ,w =1 
exp(v (h, w )) 

∥∥∥∥∥
2 

(9) 

here v (h, w ) denotes the variance of the feature maps at the spa-

ial location (h, w ) . Because the variance-based attention module 

an highlight the fast moving area, and simultaneously suppress 

he irrelevant static regions, these abnormal objects which have 

igh correlation with fast moving, i.e. a pedestrian running fast at 

he subway entrance, will get larger motion loss. This is helpful 

or the fast moving abnormal event detection. Experiments demon- 

trated that the proposed variance-based attention is an effective 

ay to amplify the motion loss. 

.5. Clustering 

Since we train our motion autoencoder and spatial autoencoder 

nly on the normal data for anomaly detection, the autoencoder 

ay also be generalized on the abnormal events. Therefore, it is 

ssential to push the spatial encoder and the motion encoder to 

btain compressed data representation. Inspired by [14,49] , we in- 

roduce a deep K-means cluster, which minimizes the distance be- 

ween the data representation and the cluster centers to force both 

he spatial encoder and the motion encoder networks to extract 

he common factors within the training sets. 

Let K denotes the number of clusters, c k denotes the represen- 

ation of cluster k , 1 < k < K, and C = { c 1 , ..., c K } is the set of repre-

entations. Given the extracted motion representation z m 

and the 

patial representation z a , we firstly concatenate these representa- 

ions in the feature channels at the same spatial location to fuse 

he two streams, and train the motion representation and the ap- 

earance representation together. Then we normalize the concate- 

ated representation within [0,1], denoted as r. For the represen- 

ation r h,w 

∈ R D extracted from the spatial location h ∈ (0 , H r ] , w ∈
0 , W r ] , where H r and W r denote the spatial size of the concate-

ated feature maps, we compute the Euclidean distance between 

he embedding descriptors and each cluster center c k . 

To constitute a continuous generalization of the clustering ob- 

ective function, we adopt the soft-assignment to calculate the dis- 
6 
ance between the data representation z i and the cluster centers C, 

here the distance is computed as: 

 (r h,w 

, C) = 

K ∑ 

k =1 

e −α‖ 

r h,w −c k ‖ 

2 

∑ K 
k =1 e 

−α‖ 

r h,w −c k ‖ 

2 

‖ 

r h,w 

− c k ‖ 

2 
2 (10) 

here the first part in Eq. (10) represents the soft-assignment of 

epresentation r h,w 

at each cluster center c k , α is a tunable hyper- 

arameter. The objective function of our deep K-means cluster is 

efined as: 

 cluster = 

H r ,W r ∑ 

h =1 ,w =1 

D (r h,w 

, C) (11) 

To initialize the cluster centers, we first train the motion au- 

oencoder and the spatial autoencoder to produce meaningful rep- 

esentations with combination of the spatial loss l a and the mo- 

ion loss l m 

. After pretraining the two autoencoders, we randomly 

elect several motion representations and their corresponding spa- 

ial representations, then we apply the K-means algorithm on the 

oncatenated representations to obtain the initial clustering values. 

The deep K-means cluster is also trained on the training set that 

ontains only normal events, each cluster center can be deemed 

s a certain kind of normality within the training datasets. The 

nomaly events on the testing set will not affect the cluster cen- 

ers. During the anomaly event detection, the cluster center will no 

onger be optimized. As can be seen in Section 4.7 , by adding such 

lustering term to the architecture, the spatial and motion autoen- 

oders can extract more compact representations. 

.6. The training objective function 

To learn the model parameters, we combine all the loss func- 

ions into our objective function: the spatial loss L a constrains the 

odel to produce the normal single frame, the motion loss L m 

con- 

trains the model to compute the RGB difference between the in- 

ut video frames and the LIF, and the cluster loss L cluster forces 

oth the motion and spatial autoencoders to minimize the distance 

etween the data representation and the cluster centers: 

oss = L a (x f i f , ̄x f i f ) + L m 

(x di f f , ̄x di f f ) + λr ∗ L cluster (12)

.7. Anomaly score 

The quality of the predicted frame x̄ li f generated by x̄ f i f + x̄ di f f 

an be used for anomaly detection, and we compute the Euclidean 

istance between x li f and x̄ li f over all pixel positions to measure 

he quality of prediction. We also measure the distance between 

he corresponding concatenated representations r and the cluster 

enters C because each of them can be deemed as the normal- 

ty. We calculate the distance over all spatial locations according to 
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Table 1 

AUC of different methods on the Ped2, Avenue and ShanghaiTech 

datasets. 

Algorithm UCSD Ped2 Avenue ShanghaiTech 

MPPCA [53] 69.3% - - 

MPPCA + SFA [8] 61.3% - - 

MDT [8] 82.9% - - 

MT-FRCN [54] 92.2% - - 

Conv2D-AE [1] 85.0% 80.0% 60.9% 

Conv3D-AE [52] 91.2% 77.1% - 

ConvLSTM-AE [55] 88.1% 77.0% - 

StackRNN [12] 92.2% 81.7% 68.0% 

Abati [56] 95.41% - 72.5% 

MemAE [57] 94.1% 83.3% 71.2% 

Liu [3] 95.4% 84.9% 72.8% 

Nguyen [10] 96.2% 86.9% - 

Our method 96.7% 87.1% 73.7% 
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q. (10) , and then upsample the loss map to the input size using 

he nearest interpolation, denoted as D u . For a given test video se- 

uence, we define an anomaly score as the multiplication of their 

rediction quality and the cluster distance: 

 = 

1 

D u 

∥∥x li f − x̄ li f 

∥∥
2 

(13) 

High score indicates that the input video clips are more likely 

o be normal. Followed by [1] , after calculating the score of each 

ideo sequence over all spatial locations, we normalize the loss to 

et a score S(t) in the range of [0,1] for each video frame: 

(t) = 

s − min t (s ) 

max t (s ) − min t (s ) 
(14) 

e use this normalized score S(t) to evaluate the probability of 

nomaly events contained in the video clips. 

. Experiments 

.1. Video anomaly detection datasets 

We evaluate our model on three publicly available datasets: 

he UCSD pedestrian dataset [8] , the Avenue dataset [50] , and the 

hanghaiTech dataset [3] . 

The UCSD Pedestrian dataset includes two subsets Ped1 and 

ed2. Since some events are labeled as normality in the train- 

ng set but are considered as anomalous in the testing set, we 

nly choose the Ped2 subset which contains 16 training videos 

nd 12 testing videos with 12 abnormal events at a resolution of 

40 × 360. All of these abnormal cases are about vehicles such as 

icycles and cars. 

The Avenue dataset contains 16 training videos and 21 testing 

ideos which are captured in front of a subway station at a resolu- 

ion of 360 × 640. All of these abnormal cases are about throwing 

bjects, loitering and running, and under the challenge of camera 

osition and angle change, where the size of the captured human 

re also changing. 

The ShanghaiTech dataset is the currently largest dataset among 

bnormal event detection datasets. Compared with other datasets, 

he ShanghaiTech dataset contains 13 different scenes with various 

ight conditions and camera angles. Its training set contains 330 

raining videos with over 270,0 0 0 training frames, and its testing 

et contains 107 testing videos with 130 abnormal events and var- 

ous anomaly types at a resolution of 480 × 856. 

.2. Implementation details 

We resize all input video frames to 256 × 256 and use the 

dam optimizer [51] to train our network on a single NVIDIA 

eForce TitanXp GPU. To initialize the motion and spatial cluster 

enters, we jointly train the spatial and motion autoencoders in 

ormal dataset without the cluster constraint at first by Eq. 3 and 

q. 6 . At this stage, we set the learning rate as 1e-4, and train

he spatial and motion autoencoders with 50 epochs for the UCSD 

ed2 dataset, and 100 epochs for the Avenue dataset and the 

hanghaiTech dataset. Then we freeze the spatial and motion au- 

oencoders, and calculate the cluster centers via K-means to cluster 

he concatenation motion representation and the spatial represen- 

ation. 

After initialization, the training process of our proposed model 

erforms an alternate optimization. We first freeze the cluster cen- 

ers and train the autoencoder parameters θ via Eq. 12 . Then we 

reeze the spatial and motion autoencoders and optimize the clus- 

er centers by Eq. 11 . We initialize the learning rate to 1e-4 and

ecrease it to 1e-5 at epoch 100 for the autoencoder part, and 

et the learning rate as 1e-5 to update the cluster centers. At this 
7 
tage, we alternately train different parts of our network with 100 

pochs for the UCSD Ped2 dataset, and 200 epochs for the Avenue 

ataset and the ShanghaiTech dataset. The final anomaly detection 

esults are directly calculated based on the reconstruction loss ac- 

ording to Eq. 14 . 

.3. Evaluation metric 

Following the prior works [3,8,12,50] , we evaluate our method 

ia the measure of area under the ROC curve (AUC). The ROC curve 

s obtained by varying the threshold of the anomaly score. A higher 

UC value means a more accurate anomaly detection result. To 

nsure the comparability between different methods, we calculate 

UC for the frame-level detection [1,12,52] . 

.4. Results 

In this section, we compare the proposed method with different 

and-crafted feature based methods [8,53,54] , and the deep fea- 

ure based state-of-the-arts which including a 2D convolution au- 

oencoder method (Conv2D-AE) [1] , a 3D convolution autoencoder 

ethod (Conv3D-AE) [52] , a convolution LSTM based autoencoder 

ethod (ConvLSTM-AE) [55] , a stacked recurrent neural network 

StackRNN) [12] , and a prediction based method [3] . To be consis- 

ent with [3] , we set T = 5 . Specifically, our model takes 4 consec-

tive frames as the motion autoencoder’s input and the first frame 

s the spatial autoencoder’s input. We set the cluster number to be 

2 for all datasets. 

Table 1 shows the AUC results of our proposed method, the 

and-crafted feature based approaches, and the deep feature based 

ethods on all the three benchmark datasets. We can see that our 

ethod outperforms all of them. In the upper part, compared to 

he hand-crafted feature based methods [8,53] , the result of our 

ethod is at least 4.4% more accurate (96.6% vs 92.2%) on the 

CSD Ped2 dataset. In the below part, compared to the deep fea- 

ure based approaches [1,3,12,52,55,57] , our method also performs 

est on all the three datasets. Particularly, the performance of our 

lgorithm is respectively 1.2%, 1.8%, and 0.9% better than [3] on 

he UCSD Ped2 dataset, the Avenue dataset, and the ShanghaiTech 

ataset. In contrast to [10] , the performance of us is 0.4% better on 

he UCSD Ped2 dataset and 0.2% better on the Avenue dataset. Be- 

ides, our method only uses the RGB difference as the motion cue, 

hich greatly reduces the computational cost of optical flow es- 

imation. Therefore, our method can be much easier implemented 

or real-time anomaly detection. The running time comparison will 

e further discussed in Section 4.8 . 

Fig. 7 shows some qualitative examples of our method. We can 

nd that for a normal frame, the reconstructed future frame tends 
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Fig. 7. Part of the temporal regularity score of our method on the Avenue, UCSD Ped2 and ShanghaiTech datasets. The regularity score implies the possibility of normal, and 

the red shaded regions are the anomaly in groundtruth. Each example shows the groundtruth x li f and the reconstructed ̄( x ) li f , where the reconstructed ̄( x ) li f is superimposed 

by the reconstruction error map on red channel to denote abnormal areas. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

t

m

e

S

o

p

s

4

f

S

K

m

p

t

s

i

l

Table 2 

Evaluation of different components of our model on the UCSD Ped2 dataset. Re- 

sults show that the combination of all components gives the best performance. 

appearance 
√ 

- 
√ √ √ √ 

motion - 
√ √ √ √ √ 

variance attention - - - 
√ 

- 
√ 

deep K-means - - - - 
√ √ 

AUC 91.1% 94.2% 94.7% 95.1% 95.9% 96.7% 

s

o

a

v

b

t

t

o

0

m

o be close to the actual future prediction. While for an abnor- 

al event, such as a man running across the road on the Av- 

nue dataset, or a bicycle riding on the UCSD Ped2 dataset and the 

hanghaiTech dataset, the reconstruction result tends to be blurry 

r distorted compared with the actual future frame. We superim- 

ose the reconstruction error map on the red channel to further 

how the abnormal regions on the reconstruction frames. 

.5. Ablation study 

In this subsection, we will conduct several ablation studies to 

ocus on investigating the effect of each component described in 

ection 3 , including the variance attention mechanism, the deep 

-means cluster strategy, and the method of combing spatial infor- 

ation and temporal information. We incorporate different com- 

onents to conduct experiments on the UCSD Ped2 dataset. For 

he first two studies, we consider only the motion loss and the 

patial reconstruction loss. The anomaly score calculation is sim- 

lar to Eq. 14 . For the third study, we consider the reconstruction 

oss with the variance attention module. For the last study, we con- 
8 
ider the full proposed model. Table. 2 validates the effectiveness 

f each component. We can see that compared with the appear- 

nce information, the temporal regularity is more important for 

ideo anomaly detection on the UCSD Ped2 dataset. When com- 

ining the RGB difference (i.e. motion) with the spatial reconstruc- 

ion, the performance improves by 0.5% (94.7% vs 94.2%). When 

he deep K-means cluster constraint is introduced, the performance 

f the spatio-temporal reconstruction can be further enhanced by 

.7%. 

To further illustrate the effectiveness of the appearance and 

otion information, we calculate the average score of the normal 
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Fig. 8. The performance (separability and accuracy) of the appearance and motion cues on the Avenue dataset. 
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Table 3 

AUC of the proposed method with different cluster numbers on the UCSD 

Ped2 dataset. 

cluster numbers - 4 8 16 32 64 

AUC 95.1% 95.2 95.5% 96.0% 96.7% 96.4% 

n

i

n  

A

t

t

d

o

 

i

w

d

t

t

m

t

w

c

c

4

e

d

b

p

t

F

e

o

r

g

p

o

nd abnormal events on the Avenue testing set (see Fig. 8 a). The 

orresponding gap, which represents the separability of the nor- 

al and abnormal events, is calculated by subtracting the average 

bnormal score from the average normal score. The larger the gap 

s, the better the separability. Clearly, the gap of integrating the ap- 

earance and motion cues is largest, which demonstrates both the 

emporal regularity and the appearance cue are useful for detect- 

ng abnormal events. Fig. 8 b reports the ROC curves of appearance 

nd motion cues on the Avenue dataset. As we can see that differ- 

nt from the performance on the UCSD Ped2 dataset, the appear- 

nce information is superior to the motion counterpart where the 

ppearance autoencoder outperforms the motion autoencoder by 

.3%. It means that both the temporal regularity and the appear- 

nce cue are important for the video anomaly detection task, and 

ur method can take the advantage of both the motion and spatial 

nformation to improve the detection performance. 

.6. Attention visualization 

For a deeper understanding on the effect of our variance atten- 

ion module, we visualize the motion encoder layer of the atten- 

ion map. For comparison, we also show the input frames. Fig. 9 

isplays two examples from the Avenue dataset. The left part of 

ig. 9 is the normal example, where people walking normally. In 

he normal scene, the changing part of the video sequence is rel- 

tively small, hence the attention weight at each location is con- 

istent. On the other hand, the abnormal event shown in the right 

art contains a person running across the road. Since the pedes- 

rian moves comparably faster than the other regions over the 

ideo, the variance attention module produces higher attention 

eight to the pedestrian. The corresponding attention map shows 

hat the value in the fast moving area is much higher than the val-

es in other areas. Since the variance attention module can auto- 

atically assign the importance weight to the moving part of video 

lips, the anomaly events (e.g. running) are more likely to cause 

igher motion loss. Accordingly, the reconstruction of the abnor- 

al object will get larger loss which is helpful for abnormal event 

etection. Experiments conducted in Section 4.5 demonstrate the 

ffectiveness of the variance attention module. 

.7. Exploration of cluster numbers 

To evaluate the performance of the deep K-means cluster strat- 

gy on detecting abnormal events in videos, we conduct experi- 

ents on removing the deep K-means cluster and changing the 
9 
umber of cluster centers. We use the UCSD-Ped2 dataset for test- 

ng and show the AUC results in Table 3 . We separately set the 

umber of the cluster centers to be 4, 8, 16, 32 and 64. Since the

UC value obtained by the autoencoder is already high at 95.1%, 

he cluster constraint can still boost the performance by 1.4% when 

he number of the cluster centers is set to 32. The AUC results of 

ifferent size of the cluster centers demonstrate the robustness of 

ur method. 

As shown in Fig. 10 , we use the t-SNE [58] algorithm to visual-

ze the distribution of the concatenated data representation trained 

ithout/with the deep K-means cluster strategy on the UCSD-Ped2 

ataset. For these representations, we use their nearest cluster cen- 

er as the pseudo-label by calculating the Euclidean distance be- 

ween the representation and each cluster center. Since we opti- 

ize both the cluster centers with the two autoencoders during 

he training stage, compared with the distribution that is trained 

ithout the cluster, the representations, which belong to the same 

luster center of our model, will be mapped closer to the cluster 

enters. 

.8. Running time 

We compare the accuracy and the efficiency of our RGB differ- 

nce strategy with optical flow on the UCSD Ped2 dataset. One tra- 

itional optical flow algorithm TV-L1 [59] and one deep learning 

ased optical flow method FlowNet2-SD [60] are selected for com- 

arison. 

As shown in Fig. 11 , our method is about 2.3 times faster 

han FlowNet2-SD [60] . Specifically, for one video frame, the 

lowNet2-SD algorithm costs 0.071 seconds while our RGB differ- 

nce strategy only needs 0.031 seconds. Furthermore, the accuracy 

f “RGB+RGB difference” is respectively 2.1% and 2.6% more accu- 

ate than “RGB+FlowNet2-SD” and “RGB+TV-L1”. 

We implement our method with an NVIDIA GeForce Titan Xp 

raphics card. It takes 0.0312 seconds to detect the abnormal event 

er video frame, i.e. 32FPS, which is on par or faster than the state- 

f-the-art deep learning based methods. For example, the FPS of 
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Fig. 9. The first row shows the input video frames, the second row shows the reconstructed frames, and the third row shows the visualization of the attention map in the 

jet color map. The higher attention weight area is represented closer to red while the lower area is represented closer to blue. The fourth row shows the RGB difference 

generated from the motion autoencoder. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. We use t-SNE [58] visualization for the concatenated data representation 

to demonstrate the effectiveness of our deep K-means cluster strategy. For the left 

part, we simultaneously train two autoencoders and randomly selected 5K concate- 

nated representations. For the right part, we train autoencoders with our deep K- 

means clusters and randomly selected 5K concatenated representations for the 8 

cluster centers. 

Fig. 11. Result of AUC performance (accuracy) and running time (efficiency) on 

the UCSD Ped2 dataset. Compared with our “RGB+RGB difference” method to the 

“RGB+FlowNet” method, the computational time of us is more than 2 times faster, 

and the AUC performance is improved by 2.1%. 
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3] , [12] , and [61] are respectively 25FPS, 50FPS, and 2FPS. Where 

he results are copied from these papers originally. Specifically, 

12] and [61] respectively are conducted on the extracted feature 
10 
nd the spatio-temporal interest points, while both [3] and our 

ethod take the original frame sequence as input. 

. Conclusion 

In this paper, we propose a novel autoencoder architecture to 

issociate the spatio-temporal information into two sub-modules 

o learn regularity in both the spatial and temporal feature spaces 

nd to generate the compact description within normal events. 

pecifically, the spatial autoencoder operates on the first individual 

rame (FIF) and extracts the regularity in the spatial space by re- 

onstructing the input. The temporal autoencoder processes on the 

onsecutive video frames to learn the temporal regularity by con- 

tructing the RGB difference. Depending on the captured temporal 

egularity and motion consistency, the temporal autoencoder can 

earn to predict the RGB residual that contains useful motion in- 

ormation for anomaly detection extremely efficient. Furthermore, 

e design a variance attention module to highlight the moving 

art of the frame. In addition, to effectively learn the normality 

n the spatial and motion feature spaces and obtain a more com- 

act data representation, we minimize the distance between the 

oncatenated representation and the cluster centers via a deep K- 

eans cluster method. We combine the result of the spatial au- 

oencoder and the motion autoencoder to obtain the prediction of 

he last individual frame (LIF), and fuse the prediction with the 

luster distance in the pixel-level to evaluate the anomaly. Exten- 

ive experiments on three representative datasets demonstrate that 

ur method achieves the state-of-the-art performance. 
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